geoana.em.fdem.MagneticDipoleWholeSpace.magnetic_flux_density#

MagneticDipoleWholeSpace.magnetic_flux_density(xyz)#

Magnetic flux density for the harmonic magnetic dipole at a set of gridded locations.

For a harmonic magnetic dipole oriented in the u^ direction with moment amplitude m and harmonic frequency f, this method computes the magnetic flux density at the set of gridded xyz locations provided.

The analytic solution is adapted from Ward and Hohmann (1988). For a harmonic magnetic dipole oriented in the x^ direction, the solution at vector distance r from the dipole is:

B(r)=μm4πr3eikr[(x2r2x^+xyr2y^+xzr2z^)...(k2r2+3ikr+3)(k2r2ikr1)x^]

where

k=ω2μεiωμσ
Parameters:
xyz(…, 3) numpy.ndarray

Gridded xyz locations

Returns:
(n_freq, …, 3) numpy.ndarray of complex

Magnetic flux density at all frequencies for the gridded locations provided. Output array is squeezed when n_freq and/or n_loc = 1.

Examples

Here, we define an z-oriented magnetic dipole and plot the magnetic flux density on the xz-plane that intercepts y=0.

>>> from geoana.em.fdem import MagneticDipoleWholeSpace
>>> from geoana.utils import ndgrid
>>> from geoana.plotting_utils import plot2Ddata
>>> import numpy as np
>>> import matplotlib.pyplot as plt

Let us begin by defining the electric current dipole.

>>> frequency = np.logspace(1, 3, 3)
>>> location = np.r_[0., 0., 0.]
>>> orientation = np.r_[0., 0., 1.]
>>> moment = 1.
>>> sigma = 1.0
>>> simulation = MagneticDipoleWholeSpace(
>>>     frequency, location=location, orientation=orientation,
>>>     moment=moment, sigma=sigma
>>> )

Now we create a set of gridded locations and compute the magnetic flux density.

>>> xyz = ndgrid(np.linspace(-1, 1, 20), np.array([0]), np.linspace(-1, 1, 20))
>>> B = simulation.magnetic_field(xyz)

Finally, we plot the real and imaginary components of the magnetic flux density.

>>> f_ind = 1
>>> fig = plt.figure(figsize=(6, 3))
>>> ax1 = fig.add_axes([0.15, 0.15, 0.40, 0.75])
>>> plot2Ddata(
>>>     xyz[:, 0::2], np.real(B[f_ind, :, 0::2]), vec=True, ax=ax1, scale='log', ncontour=25
>>> )
>>> ax1.set_xlabel('X')
>>> ax1.set_ylabel('Z')
>>> ax1.autoscale(tight=True)
>>> ax1.set_title('Real component {} Hz'.format(frequency[f_ind]))
>>> ax2 = fig.add_axes([0.6, 0.15, 0.40, 0.75])
>>> plot2Ddata(
>>>     xyz[:, 0::2], np.imag(B[f_ind, :, 0::2]), vec=True, ax=ax2, scale='log', ncontour=25
>>> )
>>> ax2.set_xlabel('X')
>>> ax2.set_yticks([])
>>> ax2.autoscale(tight=True)
>>> ax2.set_title('Imag component {} Hz'.format(frequency[f_ind]))

(Source code, png, pdf)

../../_images/geoana-em-fdem-MagneticDipoleWholeSpace-magnetic_flux_density-1.png