geoana.em.static.PointCurrentWholeSpace.current_density#
- PointCurrentWholeSpace.current_density(xyz)#
Current density for a point current in a wholespace.
This method computes the curent density for the point current in a wholespace at the set of gridded xyz locations provided. Where \(\rho\) is the electric resistivity and \(\mathbf{E}\) is the electric field for the point current. The current density \(\mathbf{J}\) is:
\[\mathbf{J} = \frac{\mathbf{E}}{\rho}\]- Parameters:
- xyz(…, 3) numpy.ndarray
Locations to evaluate at in units m.
- Returns:
- J(…, 3) np.ndarray
Current density of point current in units \(\frac{A}{m^2}\).
Examples
Here, we define a point current with current=1A in a wholespace and plot the current density.
>>> import numpy as np >>> import matplotlib.pyplot as plt >>> from geoana.em.static import PointCurrentWholeSpace
Define the point current.
>>> rho = 1.0 >>> current = 1.0 >>> simulation = PointCurrentWholeSpace( >>> current=current, rho=rho, location=None >>> )
Now we create a set of gridded locations and compute the current density.
>>> X, Y = np.meshgrid(np.linspace(-1, 1, 20), np.linspace(-1, 1, 20)) >>> Z = np.zeros_like(X) >>> xyz = np.stack((X, Y, Z), axis=-1) >>> j = simulation.current_density(xyz)
Finally, we plot the curent density.
>>> j_amp = np.linalg.norm(j, axis=-1) >>> plt.pcolor(X, Y, j_amp, shading='auto') >>> cb1 = plt.colorbar() >>> cb1.set_label(label= 'Current Density ($A/m^2$)') >>> plt.ylabel('Y coordinate ($m$)') >>> plt.xlabel('X coordinate ($m$)') >>> plt.title('Current Density for a Point Current in a Wholespace') >>> plt.show()
(
Source code
,png
,pdf
)