geoana.em.tdem.vertical_magnetic_field_horizontal_loop#
- geoana.em.tdem.vertical_magnetic_field_horizontal_loop(t, sigma=1.0, mu=1.25663706212e-06, radius=1.0, current=1.0, turns=1)#
Vertical transient magnetic field at the center of a horizontal loop over a halfspace.
Compute the vertical component of the transient magnetic field at the center of a circular loop on the surface of a conductive and magnetically permeable halfspace.
- Parameters:
- tfloat, or numpy.ndarray
- sigmafloat, optional
conductivity
- mufloat, optional
magnetic permeability
- radiusfloat, optional
radius of the horizontal loop
- currentfloat, optional
current of the horizontal loop
- turnsint, optional
number of turns in the horizontal loop
- Returns:
- hzfloat, or numpy.ndarray
The vertical magnetic field in H/m at the center of the loop. The shape will match the t input.
Notes
Equation 4.98 in Ward and Hohmann 1988
\[h_z = \frac{I}{2a}\left[ \frac{3}{\sqrt{\pi} \theta a}e^{-\theta^2 a^2} + \left(1 - \frac{3}{2 \theta^2 a^2}\right)\mathrm{erf}(\theta a) \right]\]Examples
Reproducing part of Figure 4.8 from Ward and Hohmann 1988
>>> import numpy as np >>> import matplotlib.pyplot as plt >>> from geoana.em.tdem import vertical_magnetic_field_horizontal_loop
Calculate the field at the time given
>>> times = np.logspace(-7, -1) >>> hz = vertical_magnetic_field_horizontal_loop(times, sigma=1E-2, radius=50)
Match the vertical magnetic field plot
>>> plt.loglog(times*1E3, hz) >>> plt.xlabel('time (ms)') >>> plt.ylabel('H$_z$ (A/m)') >>> plt.show()
(
Source code
,png
,pdf
)