geoana.gravity.PointMass.gravitational_gradient#
- PointMass.gravitational_gradient(xyz)#
Gravitational gradient for a point mass.
- Parameters:
- xyz(…, 3) numpy.ndarray
Observation locations in units m.
- Returns:
- (…, 3, 3) numpy.ndarray
Gravitational gradient at observation locations xyz in units \(\frac{1}{s^2}\).
Examples
Here, we define a point mass with mass=1kg and plot the gravitational gradient.
>>> import numpy as np >>> import matplotlib.pyplot as plt >>> from geoana.gravity import PointMass
Define the point mass.
>>> location = np.r_[0., 0., 0.] >>> mass = 1.0 >>> simulation = PointMass( >>> mass=mass, location=location >>> )
Now we create a set of gridded locations and compute the gravitational gradient.
>>> X, Y = np.meshgrid(np.linspace(-1, 1, 20), np.linspace(-1, 1, 20)) >>> Z = np.zeros_like(X) + 0.25 >>> xyz = np.stack((X, Y, Z), axis=-1) >>> g_tens = simulation.gravitational_gradient(xyz)
Finally, we plot the gravitational gradient for each element of the 3 x 3 matrix.
>>> fig = plt.figure(figsize=(10, 10)) >>> gs = fig.add_gridspec(3, 3, hspace=0, wspace=0) >>> (ax1, ax2, ax3), (ax4, ax5, ax6), (ax7, ax8, ax9) = gs.subplots(sharex='col', sharey='row') >>> fig.suptitle('Gravitational Gradients for a Point Mass') >>> ax1.contourf(X, Y, g_tens[:,:,0,0]) >>> ax2.contourf(X, Y, g_tens[:,:,0,1]) >>> ax3.contourf(X, Y, g_tens[:,:,0,2]) >>> ax4.contourf(X, Y, g_tens[:,:,1,0]) >>> ax5.contourf(X, Y, g_tens[:,:,1,1]) >>> ax6.contourf(X, Y, g_tens[:,:,1,2]) >>> ax7.contourf(X, Y, g_tens[:,:,2,0]) >>> ax8.contourf(X, Y, g_tens[:,:,2,1]) >>> ax9.contourf(X, Y, g_tens[:,:,2,2]) >>> plt.show()
(
Source code
,png
,pdf
)