geoana.em.tdem.vertical_magnetic_field_time_deriv_horizontal_loop#
- geoana.em.tdem.vertical_magnetic_field_time_deriv_horizontal_loop(t, sigma=1.0, mu=1.25663706212e-06, radius=1.0, current=1.0, turns=1)#
Time-derivative of the vertical transient magnetic field at the center of a horizontal loop over a halfspace.
Compute the time-derivative of the vertical component of the transient magnetic field at the center of a circular loop on the surface of a conductive and magnetically permeable halfspace.
- Parameters:
- tfloat, or numpy.ndarray
- sigmafloat, optional
conductivity
- mufloat, optional
magnetic permeability
- radiusfloat, optional
radius of the horizontal loop
- currentfloat, optional
current of the horizontal loop
- turnsint, optional
number of turns in the horizontal loop
- Returns:
- dhz_dtfloat, or numpy.ndarray
The vertical magnetic field time derivative at the center of the loop. The shape will match the t input.
Notes
Matches equation 4.97 of Ward and Hohmann 1988.
\[\frac{\partial h_z}{\partial t} = -\frac{I}{\sigma a^3}\left[ 3 \mathrm{erf}(\theta a) - \frac{2}{\sqrt{\pi}}\theta a (3 + 2 \theta^2 a^2)e^{-\theta^2 a^2} \right]\]Examples
Reproducing part of Figure 4.8 from Ward and Hohmann 1988
>>> import numpy as np >>> import matplotlib.pyplot as plt >>> from geoana.em.tdem import vertical_magnetic_field_time_deriv_horizontal_loop
Calculate the field at the time given
>>> times = np.logspace(-7, -1) >>> dhz_dt = vertical_magnetic_field_time_deriv_horizontal_loop(times, sigma=1E-2, radius=50)
Match the vertical magnetic field plot
>>> plt.loglog(times*1E3, -dhz_dt, '--') >>> plt.xlabel('time (ms)') >>> plt.ylabel(r'$\frac{\partial h_z}{ \partial t}$ (A/(m s)') >>> plt.show()
(
Source code
,png
,pdf
)